Decays for Kelvin--Voigt Damped Wave Equations I: The Black Box Perturbative Method

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbative Black Box Variational Inference

Black box variational inference (BBVI) with reparameterization gradients triggered the exploration of divergence measures other than the Kullback-Leibler (KL) divergence, such as alpha divergences. In this paper, we view BBVI with generalized divergences as a form of estimating the marginal likelihood via biased importance sampling. The choice of divergence determines a bias-variance trade-off ...

متن کامل

Global Attractors for Damped Semilinear Wave Equations

The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...

متن کامل

Expansions and eigenfrequencies for damped wave equations

We study eigenfrequencies and propagator expansions for damped wave equations on compact manifolds. In the strongly damped case, the propagator is shown to admit an expansion in terms of the finitely many eigenmodes near the real axis, with an error exponentially decaying in time. In the presence of an elliptic closed geodesic not meeting the support of the damping coefficient, we show that the...

متن کامل

Stochastic inertial manifolds for damped wave equations ∗

In this paper, stochastic inertial manifold for damped wave equations subjected to additive white noise is constructed by the Lyapunov-Perron method. It is proved that when the intensity of noise tends to zero the stochastic inertial manifold converges to its deterministic counterpart almost surely.

متن کامل

Eigenfrequencies and expansions for damped wave equations

We study eigenfrequencies and propagator expansions for damped wave equations on compact manifolds. Under the assumption of geometric control, the propagator is shown to admit an expansion in terms of finitely many eigenmodes near the real axis, with an error term exponentially decaying in time. In the presence of a nondegenerate elliptic closed geodesic not meeting the support of the damping c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Control and Optimization

سال: 2020

ISSN: 0363-0129,1095-7138

DOI: 10.1137/19m1259080